LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibrational Dependences of Broadening and Shift Coefficients of H2O Absorption Lines Perturbed by Ne, Kr, and Xe

Photo by michalmatlon from unsplash

The dependence of the intermolecular interaction potentials on the vibrational quantum numbers of the H2O molecule is derived for the H2O–Ne, H2O–Kr, and H2O–Xe systems. The broadening γ and shift… Click to show full abstract

The dependence of the intermolecular interaction potentials on the vibrational quantum numbers of the H2O molecule is derived for the H2O–Ne, H2O–Kr, and H2O–Xe systems. The broadening γ and shift δ coefficients are calculated for seven vibrational bands ν1, ν2, ν3, 2ν2, ν1 + ν2, ν2 + ν3, and ν1 + ν2 + ν3 of the H2O molecule from the absorption region 640–9550 cm−1. An analytical formula is suggested for calculation of the broadening coefficients γ at T = 296 K. It is shown that the excitation of stretching modes of the vibrations in the H2O molecule increases the broadening coefficients. The influence of the bending vibrations on γ is insignificant.

Keywords: absorption; shift coefficients; broadening shift; vibrational dependences; h2o molecule

Journal Title: Atmospheric and Oceanic Optics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.