LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modification of the Langmuir–Schaefer method for fabrication of ordered protein films

A modification of the Langmuir–Schaefer method for the fabrication of high-quality protein films on a solid substrate was proposed and applied to lysozyme. The procedure relies on the use of… Click to show full abstract

A modification of the Langmuir–Schaefer method for the fabrication of high-quality protein films on a solid substrate was proposed and applied to lysozyme. The procedure relies on the use of a pre-prepared protein solution, the parameters of which correspond to crystallization conditions. A lysozyme Langmuir monolayer was shown to be formed with the involvement of complexes, namely, dimers and octamers of protein molecules that are present in such protein solutions. These complexes apparently retain the structure after spreading a protein solution onto an aqueous subphase in a Langmuir trough. The thickness of the film after the transfer of the monolayer, which was formed by the proposed procedure, onto a solid substrate corresponds to the diameter of the octamer and this film is dense, continuous, and uniform, as was demonstrated by several methods: X-ray reflectivity, total external reflection X-ray standing wave, and atomic force microscopy. A layer of chloride ions that formed under the Langmuir monolayer was found at the air–protein film interface. This fact confirms an important role of the precipitating agent (chloride ions) in all steps of the formation of lysozyme films.

Keywords: modification langmuir; method fabrication; langmuir schaefer; langmuir; protein films; schaefer method

Journal Title: Crystallography Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.