LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of the specific features of single-crystal boron microstructure

Photo from wikipedia

A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study… Click to show full abstract

A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δa/a ≈ 0.4 and δc/c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [$$2\bar 2013$$22¯013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3–0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50–300 K are indicative of its high structural quality.

Keywords: microscopy; single crystal; study; study specific; boron; specific features

Journal Title: Crystallography Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.