LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Effects in the Poly-N-Vinylcaprolactam/Titanium(IV) Oxides Nanocomposite System and Their Nature

Photo from archive.org

Nanocomposites based on poly-N-vinylcaprolactam (PVC), characterized by different drying temperatures of aqueous PVC solution at 25°С (PVC25) and 40°С (PVC40), with titanium(IV) oxide nanoparticles (TONs) (η-phase (TP: TiO2 – x… Click to show full abstract

Nanocomposites based on poly-N-vinylcaprolactam (PVC), characterized by different drying temperatures of aqueous PVC solution at 25°С (PVC25) and 40°С (PVC40), with titanium(IV) oxide nanoparticles (TONs) (η-phase (TP: TiO2 – x · mH2O) with a superstructure to the anatase structure and ordered solid solution with partial replacement of oxygen atoms in the η-phase with peroxo group O 22– (PP: TiOx(O2)2 – x · nH2O)) have been obtained for the first time and characterized by X-ray diffraction and IR spectroscopy. It is found that a common feature of TP/PVC and PP/PVC obtained by dry mixing and grinding is the decrease in the number of water molecules for TP and PP in the interlayer space of the structure and their attachment to the PVC amide groups; the differences are related to the specificity of PVC behavior in these systems: mechanodestruction of PVC in PP/PVC40 and different numbers of water molecules in PVC25 and PVC40.

Keywords: effects poly; pvc; new effects; poly vinylcaprolactam; vinylcaprolactam titanium

Journal Title: Crystallography Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.