LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of a Ne/Xe dielectric barrier discharge excilamp for improvement of VUV radiation production

Photo from wikipedia

This work is devoted to excimer lamp efficiency optimization by using a homogenous discharge model of a dielectric barrier discharge in a Ne−Xe mixture. The model includes the plasma chemistry,… Click to show full abstract

This work is devoted to excimer lamp efficiency optimization by using a homogenous discharge model of a dielectric barrier discharge in a Ne−Xe mixture. The model includes the plasma chemistry, electrical circuit, and Boltzmann equation. In this paper, we are particularly interested in the electrical and kinetic properties and light output generated by the DBD. Xenon is chosen for its high luminescence in the range of vacuum UV radiation around 173 nm. Our study is motivated by interest in this type of discharge in many industrial applications, including the achievement of high light output lamps. In this work, we used an applied sinusoidal voltage, frequency, gas pressure, and concentration in the ranges of 2–8 kV, 10–200 kHz, 100–800 Torr, and 10–50%, respectively. The analyzed results concern the voltage Vp across the gap, the dielectric voltage Vd, the discharge current I, and the particles densities. We also investigated the effect of the electric parameters and xenon concentration on the lamp efficiency. This investigation will allow one to find out the appropriate parameters for Ne/Xe DBD excilamps to improve their efficiency.

Keywords: modeling dielectric; dielectric barrier; barrier discharge; discharge; radiation

Journal Title: Plasma Physics Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.