LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determining the Concentration of Free Electrons in n-InSb from Far-Infrared Reflectance Spectra with Allowance for Plasmon–Phonon Coupling

Photo from wikipedia

Contactless nondestructive testing is a means for determining the concentration of free electrons N in indium antimonide (InSb) samples from far-infrared reflectance spectra recorded at room temperature. A computer program… Click to show full abstract

Contactless nondestructive testing is a means for determining the concentration of free electrons N in indium antimonide (InSb) samples from far-infrared reflectance spectra recorded at room temperature. A computer program capable of determining the characteristic wave number from the Kramers–Kronig relation is developed. The calculated calibration dependence makes it possible to determine the electron concentration from the known characteristic wave number. It is shown that this dependence is described by a cubic polynomial. In the calculations, the energy dependence of the electron effective mass is taken into account. It is established that, in determining the electron concentration, account must be taken of plasmon–phonon coupling, specifically at N ≤ 5 × 1017 cm–3. The systematic error introduced into the determination of N by disregard of plasmon–phonon coupling is estimated. The software elaborated here makes it possible to calculate the electron concentration N from experimental reflectance spectra and to store and process the results. The software is tested by the example of the reflectance spectrum of heavily doped n-InSb.

Keywords: phonon coupling; reflectance; plasmon phonon; concentration; reflectance spectra

Journal Title: Semiconductors
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.