LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Power Factor of Bismuth-Telluride-Based Alloys near Topological Phase Transitions at High Pressures

Photo from wikipedia

The Seebeck coefficient S and electrical conductivity σ of bismuth-telluride-based alloys with substituents in the Bi and Te sublattices are studied at pressures up to 12 GPa at room temperature.… Click to show full abstract

The Seebeck coefficient S and electrical conductivity σ of bismuth-telluride-based alloys with substituents in the Bi and Te sublattices are studied at pressures up to 12 GPa at room temperature. It is shown that the electrical conductivity increases with pressure and, despite a decrease in the Seebeck coefficient, the power factor S2σ increases in p-Bi0.5Sb1.5Te3 and n-Bi2Te1.65Se0.65S0.7 alloys. A maximum increase in the power factor is observed for n-Bi2Te1.65Se0.65S0.7 in the pressure range of 3–4 GPa corresponding to the electronic topological phase transition. The studied alloys are used in modeling the thermoelectric module with adjustable mechanical stress applied to thermoelements.

Keywords: telluride based; power factor; power; bismuth telluride; based alloys

Journal Title: Semiconductors
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.