LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-Emitting Diodes Based on an Asymmetrical InAs/InAsSb/InAsSbP Double Heterostructure for CO2 (λ = 4.3 μm) and CO (λ = 4.7 μm) Detection

Photo by ale_s_bianchi from unsplash

Asymmetrical double InAs/InAsSb/InAsSbP heterostructures are grown by metalorganic vapor phase epitaxy. Two types (A and B) of light-emitting diodes with wavelengths of 4.1 and 4.7 μm at the emission-spectrum maximum… Click to show full abstract

Asymmetrical double InAs/InAsSb/InAsSbP heterostructures are grown by metalorganic vapor phase epitaxy. Two types (A and B) of light-emitting diodes with wavelengths of 4.1 and 4.7 μm at the emission-spectrum maximum are formed from these heterostructures. The room-temperature I–V and electroluminescence characteristics of the light-emitting diodes are investigated. The emission powers of light-emitting diodes A and B in the quasi-continuous mode (at a frequency of 512 Hz) at a current of 250 mA are 24 and 15 μW, respectively. In the pulsed mode (at a frequency of 512 Hz and a pulse length of 1 μs), the emission powers of light-emitting diodes A and B at a current of 2.1 A reach 158 and 76 μW, respectively. The developed light-emitting diodes can be used as high-efficiency emission sources in optical absorption sensors for detecting carbon dioxide and monoxide gases in the atmosphere.

Keywords: light emitting; emission; inas inassb; inassb inassbp; emitting diodes; diodes based

Journal Title: Semiconductors
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.