LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mössbauer studies of spatial spin-modulated structure and hyperfine interactions in multiferroic Bi57Fe0.10Fe0.85Cr0.05O3

Photo by tabithabrooke from unsplash

Results of Mössbauer investigations on 57Fe nuclei in multiferroic material Bi57Fe0.10Fe0.85Cr0.05O3 in the temperature range from 5.2 to 300 K are presented. Bulk rhombohedral samples were obtained by solidstate synthesis… Click to show full abstract

Results of Mössbauer investigations on 57Fe nuclei in multiferroic material Bi57Fe0.10Fe0.85Cr0.05O3 in the temperature range from 5.2 to 300 K are presented. Bulk rhombohedral samples were obtained by solidstate synthesis at high pressure. Mössbauer spectra were analyzed using the model of spatial incommensurate spin-modulated structure of the cycloidal type. Information on the influence of substituting Cr cations for Fe cations on hyperfine spectral parameters was obtained: the shift and quadrupolar shift of a Mössbauer line, and isotropic and anisotropic contributions into the hyperfine magnetic field. The anharmonicity parameter m of the spatial spin-modulated structure increases almost 1.7 times at 5.2 K when BiFeO3 is doped with chromium. The data on m were used for calculation of the uniaxial magnetic anisotropy constants and their temperature dependences for pure and chromium-doped BiFeO3.

Keywords: bi57fe0 10fe0; ssbauer; spin modulated; modulated structure

Journal Title: Physics of the Solid State
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.