LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and magnetic–luminescent properties of carbon-doped aluminum oxide

Photo from archive.org

Three-phase (corundum + δ phase + amorphous phase) amorphous–nanocrystalline powders of pure and carbon-doped Al2O3 (xC = 1.07–6.6 wt %) have been produced by pulsed electron beam evaporation in vacuum.… Click to show full abstract

Three-phase (corundum + δ phase + amorphous phase) amorphous–nanocrystalline powders of pure and carbon-doped Al2O3 (xC = 1.07–6.6 wt %) have been produced by pulsed electron beam evaporation in vacuum. The corundum hexagonal nanocrystals in the Al2O3–C nanopowder (xC = 1.07 wt %) had sizes about 5 nm. The carbon solubility boundary in the Al2O3 lattice was lower than 1.07 wt % C. The dependence of the form of the cathode-luminescence spectra and the phase compositions of the prepared Al2O3 and Al2O3–C nanopowders has been found. The absence of R lines of Cr3+ ions in photoluminescence spectra of doped nonopowders has been detected. All the nanopowders of the pure and C-doped Al2O3 were ferromagnets at room temperature with the maximum magnetization of ~0.12 emu/g at xC = 6.6 wt %.

Keywords: phase; structural magnetic; carbon doped; luminescent properties; magnetic luminescent; properties carbon

Journal Title: Physics of the Solid State
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.