LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Gas-Jet Method of Deposition of Nanostructured Silver Films

Photo from wikipedia

The synthesis of thin silver films by the gas-jet deposition method is experimentally and theoretically studied. When the metal is deposited onto silicon substrates from a supersonic jet of silver… Click to show full abstract

The synthesis of thin silver films by the gas-jet deposition method is experimentally and theoretically studied. When the metal is deposited onto silicon substrates from a supersonic jet of silver vapor with a helium carrier gas, nanostructured films with a 3−30 nm size of nanostructures are obtained for a 1230−1380 K range of jet source temperatures. The data on Ag–He gas-jet dynamics when it is expanded into vacuum (velocity, temperature, concentration, flux of particles onto a substrate) depending on parameters at the source (vapor temperature, flow rate of a carrier gas) are obtained by the method of direct simulation Monte Carlo. The range of optimal helium flow rates, when the efficiency of a gas-jet source is maximal, is determined. It is established that the presence of a background gas in a deposition chamber at pressure higher than 1 Pa decreases the flow of particles onto a substrate, and a simple way of its evaluation is proposed. Conditions for formation of silver clusters in the jet are determined by using the simulation. It is shown that for experimental deposition regimes there are no clusters in the jet, and the observed silver nanostructures are formed on the substrate surface.

Keywords: gas; gas jet; silver films; method; jet; deposition

Journal Title: Technical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.