LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mesoporous Nanostructured Materials for the Positive Electrode of a Lithium–Oxygen Battery

Photo from wikipedia

Nanostructured carbon materials (CMs), the structure can vary widely, are promising materials for the positive electrode of a lithium–oxygen battery (LOB). The electrochemical characteristics of CMs studied in model conditions… Click to show full abstract

Nanostructured carbon materials (CMs), the structure can vary widely, are promising materials for the positive electrode of a lithium–oxygen battery (LOB). The electrochemical characteristics of CMs studied in model conditions and their porous structure, as well as testing them as an active material for the positive electrode in an LOB sample, show that nanotubes (CNTs) and Super P carbon black possess the highest charge–discharge characteristics in an aprotic solvent (DMSO). Mono- and bimetallic systems containing Pt, Pd, and Ru and synthesized on CNT and Super P allow one to reduce discharge and charge overvoltage. In the presence of catalytic systems, an improvement in the energy-conversion efficiency of up to 73–76.7% is achieved for the LOB positive electrode. The possibility of achieving a stable cycling process in an LOB with a positive electrode on the basis of developed catalysts and with a LiClO4/DMSO electrolyte is shown. For the first time, the positive influence of iodine (reducing the charge voltage to about 0.8–1.0 V as compared to the characteristics of an LOB using an electrolyte without additives) on the electrode characteristics of a Li–O2 cell with the highly electron-donating solvent DMSO is demonstrated.

Keywords: oxygen battery; lithium oxygen; electrode lithium; materials positive; positive electrode

Journal Title: Protection of Metals and Physical Chemistry of Surfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.