LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Properties of Composite Electrolytic Coating Nickel–Cobalt–Aluminum Oxide–Fluoroplastic

Photo from wikipedia

The method of obtaining composite electrolytic coatings (CEC) based on the nickel–cobalt–aluminum oxide system possessing high performance properties is considered in the work, since in engineering, automotive, instrument making, and… Click to show full abstract

The method of obtaining composite electrolytic coatings (CEC) based on the nickel–cobalt–aluminum oxide system possessing high performance properties is considered in the work, since in engineering, automotive, instrument making, and other industries much attention is paid to the development of new materials possessing increased physical and mechanical properties. The use of such CEC will not only increase the reliability and durability of new machine parts and mechanisms and restore old ones, but in many cases will also replace defective alloyed steel and cast iron with cheaper metals. The article suggests a chloride electrolyte for the application of wear- and corrosion-resistant CEC nickel–cobalt–aluminum oxide–fluoroplastic. The effect of electrolysis regimes on the composition of the electrolyte and the concentration of alloying components on the physical and mechanical properties (wear resistance, corrosion resistance, microhardness, internal stresses, porosity, adhesion) of nickel–cobalt–alumina–fluoroplastic coatings is studied. The use of such coatings will expand the scope of their use as a wear- and corrosion-resistant coating in various friction nodes.

Keywords: cobalt aluminum; aluminum oxide; cobalt; nickel cobalt

Journal Title: Inorganic Materials: Applied Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.