LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanotechnologies of the Treatment and Production of Complex Transition Metal Oxides with High Photothermal Effect

Photo from archive.org

The ability to create biofunctional nanoparticles of AхO · BОy complex oxides (A = K, Н, Na; B = Ti, Mo, W; 0 < x < 2; y = 2,… Click to show full abstract

The ability to create biofunctional nanoparticles of AхO · BОy complex oxides (A = K, Н, Na; B = Ti, Mo, W; 0 < x < 2; y = 2, 3) produced via self-propagating high-temperature synthesis is considered in the present study. Nanoparticles (5–10 nm) and stable aqueous colloidal solutions on their basis are obtained via fragmentation, nanoparticle size separation, magnetic separation, and functionalization with biocompatible gels (starch and polyvinyl pyrrolidone). The optical methods for controlling nanoparticle sizes in solution are developed as well. The optical absorption spectra of colloidal solutions of KxWO3 nanoparticles are acquired at wavelengths of λ =1.45 and 1.56 μm and the monochromatic absorption coefficients of bronze nanoparticles are measured at colloid concentrations of 10 to 35 mg/mL. Evaluation of photothermal effects reveals that the greatest impact of laser radiation (λ = 1.45 μm) is achieved in K0.4WO3 nanoparticles. Powdered KxTiO2 complex oxide subjected to mechanical treatment is found to gain magnetic properties. The electrical conductivity of KxTiO2 powder is measured versus temperature over a range of 25–270°С and is shown to be an order of magnitude greater with rising temperature to ~200°С. Data gathered in this study can be used for creation of biofunctional nanomaterials with high photothermal effects.

Keywords: production complex; treatment; treatment production; nanotechnologies treatment; high photothermal; complex transition

Journal Title: Inorganic Materials: Applied Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.