LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antifriction Properties of Plasma-Chemical Coatings Based on SiO2 with MoS2 Nanoparticles under Conditions of Spinning Friction on ShKh15 Steel

Photo by scentspiracy from unsplash

The antifriction properties of coatings in the form of a nanocomposite of a silica layer with molybdenum disulfide nanoparticles distributed in it, whose average sizes are 70, 64, 61, and… Click to show full abstract

The antifriction properties of coatings in the form of a nanocomposite of a silica layer with molybdenum disulfide nanoparticles distributed in it, whose average sizes are 70, 64, 61, and 53 nm and concentrations are 80, 73, 68, and 62 wt %, respectively, grown via plasma-chemical deposition at atmospheric pressure on a 12Cr18Ni10Ti steel, are studied. The best tribotechnical properties are established for a SiO2 + 68% MoS2 coating (61 nm) which possesses the most stationary friction mode and a friction force two times lower as compared to a MoS2-free SiO2 coating.

Keywords: plasma chemical; sio2 mos2; friction; steel; antifriction properties

Journal Title: Inorganic Materials: Applied Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.