LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biotechnological Method of Obtaining Nanoparticles of Silver, Cadmium, and Zinc Sulfides. Physico-chemical Characteristics. Creation of Polymeric Nanocomposites

Photo from wikipedia

A simple and environmentally safe method for obtaining stable nanoparticles of metal sulfides nanoparticles—NpAg2S, NpCdS, and NpZnS—was developed using different strains of microorganisms in an aqueous solution of metal salts… Click to show full abstract

A simple and environmentally safe method for obtaining stable nanoparticles of metal sulfides nanoparticles—NpAg2S, NpCdS, and NpZnS—was developed using different strains of microorganisms in an aqueous solution of metal salts and sulfur sources at the National Research Center Kurchatov Institute—GosNIIgenetika. The concentration of nanoparticles is 1‒4 mg/mL in aqueous suspensions. Using the methods of electron microscopy, spectrofluorimetry, and dynamic light scattering, the main characteristics of biogenic nanoparticles were determined: shape, size distribution, crystal structure, effective diameter, luminescent spectrum, and zeta potential. According to their characteristics, these nanoparticles are referred to quantum dots. It is established that the stability of nanoparticles in aqueous suspensions is due to protein molecules adsorbed on the surface of nanoparticles, which are supplied by cells of microorganisms. Effective immobilization of biogenic nanoparticles on the surface of various polymer supports was carried out. Biogenic nanoparticles along with nanoparticles obtained by physico-chemical methods can be used as fluorophores for imaging of biological processes, also as photocatalysts, solar cells, and for new nanocomposite materials.

Keywords: obtaining nanoparticles; method obtaining; physico chemical; biotechnological method; biogenic nanoparticles

Journal Title: Inorganic Materials: Applied Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.