Tuberculosis (TB), which claims the lives of over 3500 people every day, is the world’s leading killer among infectious diseases.1 According to the WHO, 10 million people developed TB in… Click to show full abstract
Tuberculosis (TB), which claims the lives of over 3500 people every day, is the world’s leading killer among infectious diseases.1 According to the WHO, 10 million people developed TB in 2017 with a global economic burden amounting to $12 billion annually.1 2 Furthermore, TB is the most significant pathogen in the global antimicrobial resistance (AMR) crisis.3 Unless radical action is taken, drug-resistant strains of TB will account for 25% of the AMR-related deaths and cost the global economy $16.7 trillion by the year 2050.3 TB treatment is challenging with its prolonged and frequent dosing regimen that may be associated with challenging side effects.4 While significant work has been done to support adherence among people living with TB who are on treatment—including direct observation of therapy and provision of socioeconomic support—there has been limited focus on translation of how the medications themselves and their administration might be altered to improve adherence. Technologies that enable extended drug release of medication have the potential to overcome patient non-adherence to long and frequent dosing regimens. Long-acting formulations are being implemented for the reduction in the frequency of HIV treatment administration, though they require injections which …
               
Click one of the above tabs to view related content.