Introduction Acute T-cell lymphoblastic leukaemia (T-ALL) is a childhood cancer, characterised by infiltration of immature T-cells in bone marrow. Notch hyperactivation is a major driver of T-ALL development where CXCL12/CXCR4… Click to show full abstract
Introduction Acute T-cell lymphoblastic leukaemia (T-ALL) is a childhood cancer, characterised by infiltration of immature T-cells in bone marrow. Notch hyperactivation is a major driver of T-ALL development where CXCL12/CXCR4 axis plays an important role in T-ALL maintenance. In thymus the lympho-stromal communication drives progressive maturation of T-cells. Notch receptors regulate T-cell fate choices, dominating early steps of thymocyte maturation. In T-cell differentiation, Notch3, in association with pre-TCR and chemochine receptor CXCR4, govern the transition from double negative (DN) to double positive (DP) thymocytes. Previously, our laboratory demonstrated the lymphomagenic potential of Notch3 by creating a transgenic mouse model (N3-ICtg), characterised by the constitutive activation of the intracellular domain (IC) of Notch3 receptor (N3-IC) in immature thymocytes. In order to investigate the oncogenic cross-talk between Notch3 and CXCR4 in T-ALL progression, we analysed DP T-cells in different lymphoid compartments of N3-ICtg mice. Material and methods Freshly isolated cells from thymus, blood and bone marrow of N3-ICtg and WT mice were analysed by flow cytometry in order to verify the presence of DP T-cells and their cell-surface expression of CXCR4 and Notch3 receptors. Experiments in TALL1, a human T-ALL leukemic CD3+/CD4+/CD8+ cell line characterised by the activation of Notch3 and high expression of CXCR4, were also performed. TALL1 cells were treated with γ-secretase inhibitor (GSI) or their gene expression of Notch3 was silenced and then analysed by flow cytometry, RT-PCR and western blot. Statistical interpretation of the results was performed. Results and discussions DP-gated thymocytes obtained by N3-ICtg mice have shown a high co-expression of Notch3 and CXCR4 and a high migratory ability induced by SDF-1. An anomalous percentage representation of these DP T-cells at different ages in circulating blood, spleen and bone morrow may suggest an interaction between CXCR4 and Notch3 in T-ALL cell propagation. Experiments in human TALL1 cell line with Notch3 targeted inhibition suggest a modulated expression of CXCR4 through a β-arrestin1-mediated mechanism. CXCR4-antagonists treatment will further elucidate the molecular crosstalk between the two receptors. Conclusion Notch3 abnormal pathway, through boosting the expression of CXCR4 on cell-surface, may play a role in DP T-cells egress from thymus, and define a possible mechanism of ’pre-leukemic-cells’ dissemination.
               
Click one of the above tabs to view related content.