LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A combination of molecular and clinical parameters provides a new strategy for high-grade serous ovarian cancer patient management

Photo from wikipedia

Background High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. Although most patients will initially respond to first-line treatment with a combination of surgery and… Click to show full abstract

Background High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. Although most patients will initially respond to first-line treatment with a combination of surgery and platinum-based chemotherapy, up to a quarter will be resistant to treatment. We aimed to identify a new strategy to improve HGSC patient management at the time of cancer diagnosis (HGSC-1LTR). Methods A total of 109 ready-available formalin-fixed paraffin-embedded HGSC tissues obtained at the time of HGSC diagnosis were selected for proteomic analysis. Clinical data, treatment approach and outcomes were collected for all patients. An initial discovery cohort (n = 21) were divided into chemoresistant and chemosensitive groups and evaluated using discovery mass-spectrometry (MS)-based proteomics. Proteins showing differential abundance between groups were verified in a verification cohort (n = 88) using targeted MS-based proteomics. A logistic regression model was used to select those proteins able to correctly classify patients into chemoresistant and chemosensitive. The classification performance of the protein and clinical data combinations were assessed through the generation of receiver operating characteristic (ROC) curves. Results Using the HGSC-1LTR strategy we have identified a molecular signature (TKT, LAMC1 and FUCO) that combined with ready available clinical data (patients’ age, menopausal status, serum CA125 levels, and treatment approach) is able to predict patient response to first-line treatment with an AUC: 0.82 (95% CI 0.72–0.92). Conclusions We have established a new strategy that combines molecular and clinical parameters to predict the response to first-line treatment in HGSC patients (HGSC-1LTR). This strategy can allow the identification of chemoresistance at the time of diagnosis providing the optimization of therapeutic decision making and the evaluation of alternative treatment strategies. Thus, advancing towards the improvement of patient outcome and the individualization of HGSC patients’ care.

Keywords: new strategy; hgsc; patient; strategy; treatment; cancer

Journal Title: Journal of Translational Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.