LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Association between polymorphisms in microRNA seed region and warfarin stable dose

Photo from wikipedia

Background The optimal dose of anticoagulant warfarin varies among patients to achieve the target international normalised ratio. Although genetic variations related to warfarin pharmacokinetics and vitamin K cycle are important… Click to show full abstract

Background The optimal dose of anticoagulant warfarin varies among patients to achieve the target international normalised ratio. Although genetic variations related to warfarin pharmacokinetics and vitamin K cycle are important factors associated with warfarin dose requirements, these variations do not completely explain the large interindividual variability observed in the most populations, suggesting that additional factors may contribute to this variability. microRNAs have recently been introduced as regulators of drug function genes, and therefore, may be involved in drug responses. In this study, we aimed to evaluate the possible association between variants in the seed region of microRNAs, which target the genes involved in the action of warfarin and warfarin dose requirement. Methods 526 samples were collected from Iranian patients. Four selected polymorphisms in the seed region of microRNAs (rs2910164, rs66683138, rs12416605 and rs35770269 in miR-146a, miR-3622a, miR-938 and miR-449c, respectively) were genotyped by PCR-restriction fragment length polymorphism method. Results rs2910164 C/G in the seed region of miR-146a was associated with warfarin dose requirement (p<0.001); the patients with GG genotype had the higher mean dose of warfarin (40.6 mg/week, compared with 33.9 and 31.8 mg/week for GC and CC genotypes, respectively). The association of other polymorphisms with warfarin dose requirement was not statistically significant. Conclusion rs2910164 C/G in the seed region of miR-146a is associated with warfarin maintenance dose, likely by disrupting interaction between miR-146a and ATP-binding cassette subfamily B member 1 gene, ABCB1. Therefore, this polymorphism may possibly be a potential factor for assessment of warfarin dose requirements.

Keywords: warfarin; seed; warfarin dose; seed region

Journal Title: Postgraduate Medical Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.