LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ evaluation of performance of reclamation measures implemented on abandoned reactive tailings disposal site

Photo from wikipedia

The abandoned Manitou mine site produced acid mine drainage for decades. One of the site’s tailings storage facilities (TSF 2) was reclaimed in 2009 using an elevated water table combined… Click to show full abstract

The abandoned Manitou mine site produced acid mine drainage for decades. One of the site’s tailings storage facilities (TSF 2) was reclaimed in 2009 using an elevated water table combined with a monolayer cover made of low-sulphur tailings. A field investigation was undertaken from 2012 to 2015 to verify the performance of the reclamation technique in stemming the production of contaminants. This verification is based on two main criteria, i.e., the minimum water table level and maximum oxygen flux reaching the Manitou tailings. Thirteen monitoring stations were installed in TSF 2. The hydrogeological behavior and oxygen migration were investigated at each station by measuring volumetric water content, suction, water table level, gaseous pore oxygen concentration, and oxygen consumption. Analyses of field data showed that the minimum water table level criterion was reached with the exception of a portion of TSF 2 during the summer months. Oxygen fluxes reaching the Manitou tailings were determined using numerical simulations and analytical solutions; their yearly mean was many times lower than maximum targets generally used on reclaimed tailings disposal areas. The current system met the targeted performance criteria over the studied period.

Keywords: performance reclamation; tailings disposal; water; site; water table

Journal Title: Canadian Geotechnical Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.