LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A thermal elastic visco-plastic model for soft clayey soils

Photo from wikipedia

It is frequently observed that the stress–strain behaviour of soft clayey soils is affected by temperature changes. Development and verification of a reliable constitutive model with consideration of variable temperature… Click to show full abstract

It is frequently observed that the stress–strain behaviour of soft clayey soils is affected by temperature changes. Development and verification of a reliable constitutive model with consideration of variable temperature conditions are necessary. Due to the significant rheological and other nonlinear properties of clayey soils, the coupled effects of temperature, time dependency, structuration, nonlinear creep, and anisotropy should be considered in the constitutive model. In this study, a new three-dimensional (3D) thermal elastic visco-plastic (TEVP) model is established and verified for the time-dependent stress–strain behaviour of clayey soils considering temperature changes. The model is developed based on the existing elastic visco-plastic (EVP) models with the equivalent time concept, the overstress theory, and the critical state model. The thermal elastic line and virgin heating line are introduced and generalized to construct constitutive equations for both thermal elastic and thermal visco-plastic behaviour of clayey soils in general stress conditions. After establishing the 3D basic model, further refinement is introduced to consider the nonlinear creep behaviour and structuration for natural and reconstituted clayey soils. Finally, the model is successfully validated by a series of laboratory test data on different clayey soils under variable temperature paths with reasonably good accuracy.

Keywords: thermal elastic; clayey; model; clayey soils; visco plastic

Journal Title: Canadian Geotechnical Journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.