In this study, the effects of various concentrations of zinc and zinc oxide nanoparticles (nZn, nZnO) were evaluated in tomato and wheat. Results showed that at lower concentrations, nZn and… Click to show full abstract
In this study, the effects of various concentrations of zinc and zinc oxide nanoparticles (nZn, nZnO) were evaluated in tomato and wheat. Results showed that at lower concentrations, nZn and nZnO augmented seed germination and growth parameters, whereas with higher concentrations, the nanoparticles reduced these traits. Zn concentrations corresponding to Zn dissolved (3–23 mg Zn·L−1) from nanoparticles (NPs) did not significantly affect the germination indices in either species. Compared with the bulk counterparts of ZnO, NPs exerted more toxicity on seed germination, growth parameters, and chlorophyll and carotenoid contents, and also increased Zn bioaccumulation more. More often than not, nZnO provoked more adverse symptoms than nZn at equivalent concentrations. In both species, the Zn accumulation in roots and shoots followed the order: Zn2+ ions > nZn > nZnO > bulk ZnO > control. Exposure to 200 mg Zn·L−1 nZn and nZnO increased H2O2 accumulation and malondealdehyde (MDA) levels, which were more pronou...
               
Click one of the above tabs to view related content.