An extensive polygonal fault system (PFS) has been recognized in fine-grained Late Cretaceous sediments of the Western Interior Seaway of North America. Polygonal fault systems are pervasive organizations of nontectonic… Click to show full abstract
An extensive polygonal fault system (PFS) has been recognized in fine-grained Late Cretaceous sediments of the Western Interior Seaway of North America. Polygonal fault systems are pervasive organizations of nontectonic faults with fault traces that coalesce to form distinctive polygonal fault patterns. Interpretation of a three-dimensional seismic dataset from southeast Saskatchewan provides insight into fault initiation, timing, and geometry for the Great Plains PFS (GPPFS). Faulting initiates in the Niobrara Formation, with the largest fault throws occurring over Early Cretaceous Viking Formation sandstone accumulations, suggesting that drape compaction over the channel sand initiated some of the faulting. Above this, faulting increases in vertical offset, and the predominant fault strike angles change in the Lea Park, Belly River, and Bearpaw formations (all homotaxial to the Pierre Shale) throughout Campanian time. By late Bearpaw time, the initially almost random fault strike orientations change to well-defined northwest–southeast- and west–east-striking grabens. These grabens have up to 20 m of throw and can be 125 m wide and 900 m long at ∼400 m current depth. Predominant graben faults are the continuation of some of the deeper PFS faults. Moreover, the grabens are present over a Campanian clinoform bed and may be interpreted to indicate Bearpaw time extension tectonics that is local or regional in scale. The PFS helps to explain near-surface faulting observed in Late Cretaceous sediments in the Western Interior Seaway and could be used as a model to help explain Late Cretaceous geology, subsurface groundwater flow, and shallow natural gas reservoir continuity.
               
Click one of the above tabs to view related content.