The escape of Atlantic salmon (Salmo salar) from aquaculture facilities can result in both negative genetic and ecological interactions with wild populations, yet the ability to predict the associated risk… Click to show full abstract
The escape of Atlantic salmon (Salmo salar) from aquaculture facilities can result in both negative genetic and ecological interactions with wild populations, yet the ability to predict the associated risk to wild populations has remained elusive. Here we assess the potential of a spatiotemporal database of aquaculture facility locations, production estimates, and escape events to predict the distribution of escaped farmed salmon and genetic impacts on wild populations in the Northwest Atlantic. Industry production data, reported escape events, and in-river detections of escaped farmed salmon were collected from across the Northwest Atlantic. Genetic estimates of impact were obtained using single nucleotide polymorphisms (95 loci) representing aquaculture and wild salmon throughout the region (30 populations, 3048 individuals). Both the number of escaped farmed salmon detected at counting facilities and the magnitude of genetic impacts were positively correlated with a cumulative spatial measure of aquacu...
               
Click one of the above tabs to view related content.