Uncertainty in forest information typically results in economic and ecological losses as a consequence of suboptimal management decisions. Several techniques have been proposed to handle such uncertainties. However, these techniques… Click to show full abstract
Uncertainty in forest information typically results in economic and ecological losses as a consequence of suboptimal management decisions. Several techniques have been proposed to handle such uncertainties. However, these techniques are often complex and costly. Data assimilation (DA) has recently been advocated as a tool that may reduce the uncertainty, thereby improving the quality of forest planning results. It offers an opportunity to make use of all new sources of information in a systematic way and thus provides more accurate and up-to-date information to forest planning. In this study, we refer to literature on handling uncertainties in forest planning, as well as related literature from other scientific fields, to assess the potential benefits of using DA in forest planning. We identify five major potential benefits: (i) the accuracy of the information will be improved; (ii) the information will be kept up to date; (iii) the DA process will provide information with estimated accuracy; (iv) stochas...
               
Click one of the above tabs to view related content.