LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Additive biomass equations for slash pine trees: comparing three modeling approaches

Photo from wikipedia

Both aggregative and disaggregative strategies were used to develop additive nonlinear biomass equations for slash pine (Pinus elliottii Engelm. var. elliottii) trees in the southeastern United States. In the aggregative… Click to show full abstract

Both aggregative and disaggregative strategies were used to develop additive nonlinear biomass equations for slash pine (Pinus elliottii Engelm. var. elliottii) trees in the southeastern United States. In the aggregative approach, the total tree biomass equation was specified by aggregating the expectations of component biomass models, and their parameters were estimated by jointly fitting all component and total biomass equations using weighted nonlinear seemingly unrelated regression (NSUR) (SUR1) or by jointly fitting component biomass equations using weighted NSUR (SUR2). In an alternative disaggregative approach (DRM), the biomass component proportions were modeled using Dirichlet regression, and the estimated total tree biomass was disaggregated into biomass components based on their estimated proportions. There was no single system to predict biomass that was best for all components and total tree biomass. The ranking of the three systems based on an array of fit statistics followed the order of SUR2 > SUR1 > DRM. All three systems provided more accurate biomass predictions than previously published equations.

Keywords: biomass equations; tree biomass; biomass; slash pine; total tree; equations slash

Journal Title: Canadian Journal of Forest Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.