In this study, we have researched the interaction of SO2 molecule onto boron phosphide (B12P12) and Ni-decorated B12P12 nanoclusters using density functional theory (DFT). While SO2 has weak physisorption on… Click to show full abstract
In this study, we have researched the interaction of SO2 molecule onto boron phosphide (B12P12) and Ni-decorated B12P12 nanoclusters using density functional theory (DFT). While SO2 has weak physisorption on the surface of pristine B12P12 (–7.4 kJ/mol), high chemisorption is found in the case of Ni-decorated B12P12 depending on the location of the Ni-decorated atom (–140.9, –167.7, and –166.5 kJ/mol). We found three major sites for appropriate decoration of Ni on the surface of a nanocluster, so we tried to find the maximum SO2 adsorption of this modified surface by taking into account the calculations of adsorption energy, bond distance, dipole moment study, charge analysis, frontier orbital analysis, and density of states of all relaxed systems. Our observations reveal that Ni-decorated B12P12 are highly sensitive for SO2 molecules, which is beneficial for design of sensitive sensor.
               
Click one of the above tabs to view related content.