LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy.

Photo by diabetesmagazijn from unsplash

Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study… Click to show full abstract

Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study aimed to investigate the role of miR-30a-5p in DCM and the underlying mechanism. The rat model of diabetes mellitus (DM) was established by streptozotocin injection, and the rat primary cardiac fibroblasts (CFs) were isolated from cardiac tissue and then treated with high glucose (HG). MTT assay was performed to assess the viability of CFs. Dual-luciferase reporter gene assay was conducted to verify the interaction between miR-30a-5p and Smad2. The expression of miR-30a-5p was downregulated in the myocardial tissues of DM rats and HG-stimulated CFs. Overexpression of miR-30a-5p reduced Smad2 levels and inhibited collagen formation in HG-stimulated CFs and DM rats, as well as decreased the proliferation of CFs induced by HG. Smad2 was a target of miR-30a-5p and its expression was inhibited by miR-30a-5p. Furthermore, the simultaneous overexpression of Smad2 and miR-30a-5p reversed the effect of miR-30a-5p overexpression alone in CFs. Our results indicated that miR-30a-5p reduced Smad2 expression and also induced a decrease in proliferation and collagen formation in DCM.

Keywords: mir 30a; diabetic cardiomyopathy; collagen formation; proliferation

Journal Title: Canadian journal of physiology and pharmacology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.