Cytoplasmic male sterility (CMS) is advantageous in extensive crop breeding and represents a perfect model for understanding anther and pollen development research. MicroRNAs (miRNAs) play key roles in regulating various… Click to show full abstract
Cytoplasmic male sterility (CMS) is advantageous in extensive crop breeding and represents a perfect model for understanding anther and pollen development research. MicroRNAs (miRNAs) play key roles in regulating various biological processes. However, the miRNA-mediated regulatory network in kenaf CMS occurrence remains largely unknown. In the present study, a comparative deep sequencing approach was used to investigate the miRNAs and their roles in regulating anther and pollen development during CMS occurrence. We identified 283 known and 46 new candidate miRNAs in kenaf anther. A total of 67 differentially expressed miRNAs (DEMs) were discovered between CMS and its maintainer line. Among them, 40 and 27 miRNAs were up- and downregulated, respectively. These 67 DEMs were predicted to target 189 genes. Validation of DEMs and putative target genes were confirmed by using real-time quantitative PCR. In addition, a potential miRNA-mediated regulatory network, which mainly involves the auxin signaling pathway, signal transduction, glycolysis and energy metabolism, gene expression, transmembrane transport, protein modification and metabolism, and floral development, that mediates anther development during CMS occurrence was proposed. Taken together, our findings provide a better understanding of the molecular mechanism of miRNA regulation in pollen development and CMS occurrence in kenaf.
               
Click one of the above tabs to view related content.