LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalised radiating fields in Einstein–Gauss–Bonnet gravity

Photo from wikipedia

A five-dimensional spherically symmetric generalised radiating field is studied in Einstein–Gauss–Bonnet gravity. We assume the matter distribution is an extended Vaidya-like source and the resulting Einstein–Gauss–Bonnet field equations are solved… Click to show full abstract

A five-dimensional spherically symmetric generalised radiating field is studied in Einstein–Gauss–Bonnet gravity. We assume the matter distribution is an extended Vaidya-like source and the resulting Einstein–Gauss–Bonnet field equations are solved for the matter variables and mass function. The evolution of the mass, energy density and pressure are then studied within the spacetime manifold. The effects of the higher order curvature corrections of Einstein–Gauss–Bonnet gravity are prevalent in the analysis of the mass function when compared to general relativity. The effects of diffusive transport are then considered and we derive the specific equation for which diffusive behaviour is possible. Gravitational collapse is then considered and we show that collapse ends with a weak and conical singularity for the generalised source, which is not the case in Einstein gravity.

Keywords: einstein gauss; gauss bonnet; generalised radiating; bonnet gravity

Journal Title: European Physical Journal C
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.