The present work involves solving the time-independent Schrodinger equation for a two-dimensional (2D) hydrogen atom under the combined effect of static electric field, magnetic field and circular confinement. A study… Click to show full abstract
The present work involves solving the time-independent Schrodinger equation for a two-dimensional (2D) hydrogen atom under the combined effect of static electric field, magnetic field and circular confinement. A study of the influence of external fields as well as spatial confinement on charge currents and induced magnetic fields has been carried out. It has been found that applied magnetic field reduces Stark shifts. The presence of tight spatial confinement leads to increase in the magnitude of currents as well as induced magnetic fields. In fact, induced magnetic field of the order of 400 T has been observed in one of the cases. The results of the work may prove helpful in manipulating these currents and fields.
               
Click one of the above tabs to view related content.