LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting dipole orientations in spontelectric methyl formate

Photo by jentheodore from unsplash

Capturing intermolecular interactions accurately is essential for describing, e.g., morphology of molecular matter on the nanoscale. When it reveals characteristics which are not directly accessible through experiments or ab initio… Click to show full abstract

Capturing intermolecular interactions accurately is essential for describing, e.g., morphology of molecular matter on the nanoscale. When it reveals characteristics which are not directly accessible through experiments or ab initio theories, a model here becomes eminently beneficial. In laboratory astrochemistry, the intense study of ices has led i.a. to the exploration of the spontelectric state of nanofilms. Despite its success in biophysics or biochemistry and despite its predictive power, molecular modeling has however not yet been widely deployed for solid-state astrochemistry. In this article, therefore a pertinent hitherto unaddressed problem is tackled by means of the classical molecular-dynamics method, namely the unknown distribution of relative dipole orientations in spontelectric cis -methyl formate (MF). In doing so, from ab initio data, a molecular model is derived which confirms for the first time the anomalous temperature-dependent polarization of MF. These insights thus represent a further step toward understanding spontelectric behavior. Moreover, unprecedented first-principles predictions are reported regarding the ground-state geometry of the MF trimer and tetramer. In conjunction with the study of the binding to carbonaceous substrates, these additional findings can help to exemplarily elucidate molecular ice formation in astrochemical settings.

Keywords: predicting dipole; methyl formate; spontelectric methyl; orientations spontelectric; dipole orientations

Journal Title: European Physical Journal D
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.