We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform… Click to show full abstract
We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform higher-rank $m \geq 2$, single-site perturbations, is given by a Poisson point process with intensity measure $n(E_0)~ds$, where $n(E_0)$ is the density of states at energy $E_0$ in the region of localization near the spectral band edges. This improves the result of Hislop and Krishna (arXiv:1809.01236), who proved that the LES is a compound Poisson process with L\'evy measure supported on the set $\{1, 2, \ldots, m \}$. Our proofs are an application of the ideas of Dieltein and Elgart to these higher-rank lattice models with two spectral band edges, and illustrate, in a simpler setting, the key steps of the proof of Dieltein and Elgart.
               
Click one of the above tabs to view related content.