LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local Eigenvalue Statistics for Higher-Rank Anderson Models After Dietlein-Elgart

Photo by britishlibrary from unsplash

We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform… Click to show full abstract

We use the method of eigenvalue level spacing developed by Dietlein and Elgart (arXiv:1712.03925) to prove that the local eigenvalue statistics (LES) for the Anderson model on $Z^d$, with uniform higher-rank $m \geq 2$, single-site perturbations, is given by a Poisson point process with intensity measure $n(E_0)~ds$, where $n(E_0)$ is the density of states at energy $E_0$ in the region of localization near the spectral band edges. This improves the result of Hislop and Krishna (arXiv:1809.01236), who proved that the LES is a compound Poisson process with L\'evy measure supported on the set $\{1, 2, \ldots, m \}$. Our proofs are an application of the ideas of Dieltein and Elgart to these higher-rank lattice models with two spectral band edges, and illustrate, in a simpler setting, the key steps of the proof of Dieltein and Elgart.

Keywords: higher rank; dietlein elgart; eigenvalue statistics; local eigenvalue; statistics higher; rank

Journal Title: Reviews in Mathematical Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.