LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluctuation Scaling of Neuronal Firing and Bursting in Spontaneously Active Brain Circuits

Photo from wikipedia

We employed high-density microelectrode arrays to investigate spontaneous firing patterns of neurons in brain circuits of the primary somatosensory cortex (S1) in mice. We recorded from over 150 neurons for… Click to show full abstract

We employed high-density microelectrode arrays to investigate spontaneous firing patterns of neurons in brain circuits of the primary somatosensory cortex (S1) in mice. We recorded from over 150 neurons for 10min in each of eight different experiments, identified their location in S1, sorted their action potentials (spikes), and computed their power spectra and inter-spike interval (ISI) statistics. Of all persistently active neurons, 92% fired with a single dominant frequency - regularly firing neurons (RNs) - from 1 to 8Hz while 8% fired in burst with two dominant frequencies - bursting neurons (BNs) - corresponding to the inter-burst (2-6Hz) and intra-burst intervals (20-160Hz). RNs were predominantly located in layers 2/3 and 5/6 while BNs localized to layers 4 and 5. Across neurons, the standard deviation of ISI was a power law of its mean, a property known as fluctuation scaling, with a power law exponent of 1 for RNs and 1.25 for BNs. The power law implies that firing and bursting patterns are scale invariant: the firing pattern of a given RN or BN resembles that of another RN or BN, respectively, after a time contraction or dilation. An explanation for this scale invariance is discussed in the context of previous computational studies as well as its potential role in information processing.

Keywords: brain circuits; firing bursting; firing; power; fluctuation scaling

Journal Title: International journal of neural systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.