LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Conditional Generative Adversarial Network and Transfer Learning-Oriented Anomaly Classification System for Electrospun Nanofibers

Photo from wikipedia

This paper proposes a generative model and transfer learning powered system for classification of Scanning Electron Microscope (SEM) images of defective nanofibers (D-NF) and nondefective nanofibers (ND-NF) produced by electrospinning… Click to show full abstract

This paper proposes a generative model and transfer learning powered system for classification of Scanning Electron Microscope (SEM) images of defective nanofibers (D-NF) and nondefective nanofibers (ND-NF) produced by electrospinning (ES) process. Specifically, a conditional-Generative Adversarial Network (c-GAN) is developed to generate synthetic D-NF/ND-NF SEM images. A transfer learning-oriented strategy is also proposed. First, a Convolutional Neural Network (CNN) is pre-trained on real images. The transfer-learned CNN is trained on synthetic SEM images and validated on real ones, reporting accuracy rate up to 95.31%. The achieved encouraging results endorse the use of the proposed generative model in industrial applications as it could reduce the number of needed laboratory ES experiments that are costly and time consuming.

Keywords: network; adversarial network; conditional generative; transfer learning; generative adversarial; learning oriented

Journal Title: International journal of neural systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.