We give presentations of the asymptotic expansions of the Kashaev invariant of hyperbolic knots with seven crossings. As the volume conjecture states, the leading terms of the expansions present the… Click to show full abstract
We give presentations of the asymptotic expansions of the Kashaev invariant of hyperbolic knots with seven crossings. As the volume conjecture states, the leading terms of the expansions present the hyperbolic volume and the Chern–Simons invariant of the complements of the knots. As coefficients of the expansions, we obtain a series of new invariants of the knots. This paper is a continuation of the previous papers [T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the 52 knot, Quantum Topol. 7 (2016) 669–735; T. Ohtsuki and Y. Yokota, On the asymptotic expansion of the Kashaev invariant of the knots with 6 crossings, to appear in Math. Proc. Cambridge Philos. Soc.], where the asymptotic expansions of the Kashaev invariant are calculated for hyperbolic knots with five and six crossings. A technical difficulty of this paper is to use 4-variable saddle point method, whose concrete calculations are far more complicated than the previous papers.
               
Click one of the above tabs to view related content.