In this paper, we discuss inverse problem in spray geometry. We find infinitely many sprays with non-diagonalizable Riemann curvature on a Lie group, these sprays are not induced by Finsler… Click to show full abstract
In this paper, we discuss inverse problem in spray geometry. We find infinitely many sprays with non-diagonalizable Riemann curvature on a Lie group, these sprays are not induced by Finsler metrics. We also study left invariant sprays with non-vanishing spray vectors on Lie groups. We prove that if such a spray [Formula: see text] on a Lie group [Formula: see text] satisfies that [Formula: see text] is commutative or [Formula: see text] is projective, then [Formula: see text] is not induced by any (not necessary positive definite) left invariant Finsler metric. Finally, we construct an abundance of the left invariant sprays on Lie groups which satisfy the conditions in above result.
               
Click one of the above tabs to view related content.