Human dynamics and sociophysics suggest statistical models that may explain and provide us with better insight into social phenomena. Contextual and selection effects tend to produce extreme values in the… Click to show full abstract
Human dynamics and sociophysics suggest statistical models that may explain and provide us with better insight into social phenomena. Contextual and selection effects tend to produce extreme values in the tails of rank-ordered distributions of both census data and district-level election outcomes. Models that account for this nonlinearity generally outperform linear models. Fitting nonlinear functions based on rank-ordering census and election data therefore improves the fit of aggregate voting models. This may help improve ecological inference, as well as election forecasting in majoritarian systems. We propose a generative multiplicative decrease model that gives rise to a rank-order distribution and facilitates the analysis of the recent UK EU referendum results. We supply empirical evidence that the beta-like survival function, which can be generated directly from our model, is a close fit to the referendum results, and also may have predictive value when covariate data are available.
               
Click one of the above tabs to view related content.