LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coverage-dependent magnetic and electronic properties of graphene with Co adatoms

Photo by maxchen2k from unsplash

Decorating two-dimensional (2D) materials with transition-metal adatoms is an effective way to bring about new physical properties that are intriguing for applications in electronics and spintronics devices. Here, we systematically… Click to show full abstract

Decorating two-dimensional (2D) materials with transition-metal adatoms is an effective way to bring about new physical properties that are intriguing for applications in electronics and spintronics devices. Here, we systematically studied the coverage-dependent magnetic and electronic properties of graphene decorated by Co adatoms, based on first-principles calculations. We found that if the Co coverage is larger than 1/3[Formula: see text]ML, the Co atoms will aggregate to form a Co monolayer and then a van der Waals bilayer system between the Co monolayer and graphene forms. When the Co coverage is [Formula: see text][Formula: see text]ML, the Co adatom is spin-polarized with spin moment varying from 1.1 to 1.4[Formula: see text][Formula: see text]. The [Formula: see text] and [Formula: see text] orbitals of Co hybridize significantly with the [Formula: see text] bands of graphene, which generates a series of new bands in the energy range from [Formula: see text][Formula: see text]eV to 1[Formula: see text]eV with respect to the Dirac point of graphene. In most cases, the new bands near the Fermi level lead to topological states characterized by the quantum anomalous Hall effect.

Keywords: see text; coverage dependent; text formula; formula see

Journal Title: International Journal of Modern Physics C
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.