LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on improvement of tensile strength in lap-welding of pure titanium using disk laser

Photo by salvador_86 from unsplash

Laser welding has the benefit of hardly causing welding deformation as it requires less heat input than existing welding methods. The heat input is determined by the laser output and… Click to show full abstract

Laser welding has the benefit of hardly causing welding deformation as it requires less heat input than existing welding methods. The heat input is determined by the laser output and welding speed, and the penetration depth, bead width, joining length, and bead shape are varied depending on these two welding parameters. In this study, bead and lap welding were performed on a thin pure titanium plate with a thickness of 0.5 mm using a disk laser with a maximum output of 3.3 kW. Weldability was evaluated by observing the penetration depth, bead width, joining length, and bead shape for different laser outputs and welding speeds. Results show that a weld zone with excellent joining length can be obtained for an output of 1.1 kW and speed of 2.5 m/min, as well as for an output of 1.3 kW and speed of 3.5 m/min in lap welding. Tensile-shear test was conducted with the specimens under these two conditions to investigate their mechanical characteristics.

Keywords: pure titanium; lap welding; laser; disk laser; using disk

Journal Title: Modern Physics Letters B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.