This paper deals with the dynamics of optical solitons in nonlinear Schrödinger equation (NLSE) with cubic-quintic law nonlinearity in the presence of self-frequency shift and self-steepening. This type of equation… Click to show full abstract
This paper deals with the dynamics of optical solitons in nonlinear Schrödinger equation (NLSE) with cubic-quintic law nonlinearity in the presence of self-frequency shift and self-steepening. This type of equation describes the ultralarge capacity transmission and traveling of laser light pulses in optical fibers. Two robust analytical approaches are employed to determine contemporary solutions. Some new explicit rational, periodic and combo periodic soliton solutions are extracted using the extended trial equation method. The Riccati–Bernoulli sub-ODE method provided us with singular and dark soliton solutions. The constraints found are necessary for the existence of solitons.
               
Click one of the above tabs to view related content.