The nonlinear vibration of axially moving nanobeams at the microscale exhibits remarkable scale effects. A model of an axially moving nanobeam is established based on non-local strain gradient theory and… Click to show full abstract
The nonlinear vibration of axially moving nanobeams at the microscale exhibits remarkable scale effects. A model of an axially moving nanobeam is established based on non-local strain gradient theory and considering two scale effects. The discrete equation of a non-autonomous planar system is obtained using the Galerkin method. The response characteristics of the system are determined using phase diagrams and Poincaré sections, and the effects of the scale parameters on the form of the motion are analyzed. The results show that as the non-local parameter and the material characteristic length parameter vary, the system undergoes multiple forms of motion, including periodic, period-doubling and chaotic motions. Two routes to chaos — period-doubling bifurcation and intermittent chaos — are identified in the variation ranges of the two scale parameters.
               
Click one of the above tabs to view related content.