LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation of rotating channel flow based on a modified DES model

Photo from wikipedia

A new type of nonlinear sub-grid scale (SGS) model is adopted based on the helicity analysis and is verified by predicting the internal flow in a rotating channel. A stress… Click to show full abstract

A new type of nonlinear sub-grid scale (SGS) model is adopted based on the helicity analysis and is verified by predicting the internal flow in a rotating channel. A stress term that contains helicity constraint is introduced into the original SGS model to construct a nonlinear sub-grid model. This additional term representing the helicity constraint effect in the momentum equations is shown to give predictions that are in better agreement with the experimental data. In this paper, the Detached-Eddy Simulation (DES) and the nonlinear SGS model are used to further study the turbulence statistics of the rotating channel flow. Combining with the Reynolds stress transport equations and the turbulent kinetic energy transport equation, the change of turbulence statistics near the wall of the rotating channel is analyzed. The newly added term changes the turbulent viscosity near the wall, which changes the velocity gradient near the wall and further affects other turbulence statistics near the wall.

Keywords: rotating channel; channel flow; near wall; model; simulation

Journal Title: Modern Physics Letters B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.