LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shear deformation mechanical performance of Ni–Co alloy nanoplate by molecular dynamics simulation

Photo from wikipedia

Ni–Co alloy has great advantages in the fields of micro-electromechanical systems and aerospace, however, the lack of micro-deformation mechanism restricts its industrial application. Herein, the deformation mechanism and microstructure evolution… Click to show full abstract

Ni–Co alloy has great advantages in the fields of micro-electromechanical systems and aerospace, however, the lack of micro-deformation mechanism restricts its industrial application. Herein, the deformation mechanism and microstructure evolution of Ni–Co alloy nanoplate under shear loading are investigated by MD. The yield strength increases gradually with the increase of the velocity, and the highest shear modulus is 111.43 GPa. The stress concentration leads to the nucleation and expansion of the dislocation, and the stacking fault expands with the dislocation motion, swallowing most of the disordered atoms. By Dislocation Extraction Algorithm (DXA), it is found that Shockley and Perfect dislocations make a major role, and the interactions between dislocations are responsible for the high mechanical properties. As the temperature increases, the yield strength decreases significantly, the stress fluctuations in the plastic phase at 100 K and 200 K are greater compared to other temperatures. Meanwhile, the coherence of the dislocations motion decreases, and the atoms in the stacking faults are scattered, leading to the decreasing of area. The above results are helpful for the design and control of nanoelectronic facilities and provide a significant guide for the industrial applications of Ni–Co alloy nanoplate.

Keywords: deformation; alloy nanoplate; deformation mechanical; shear deformation

Journal Title: Modern Physics Letters B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.