We investigate some algebraic structures called quasi-trivial quandles and we use them to study link-homotopy of pretzel links. Precisely, a necessary and sufficient condition for a pretzel link with at… Click to show full abstract
We investigate some algebraic structures called quasi-trivial quandles and we use them to study link-homotopy of pretzel links. Precisely, a necessary and sufficient condition for a pretzel link with at least two components being trivial under link-homotopy is given. We also generalize the quasi-trivial quandle idea to the case of biquandles and consider enhancement of the quasi-trivial biquandle cocycle counting invariant by quasi-trivial biquandle cocycles, obtaining invariants of link-homotopy type of links analogous to the quasi-trivial quandle cocycle invariants in Inoue’s paper [A. Inoue, Quasi-triviality of quandles for link-homotopy, J. Knot Theory Ramifications 22(6) (2013) 1350026, doi:10.1142/S0218216513500260, MR3070837].
               
Click one of the above tabs to view related content.