LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carter constant induced mechanism for generation of anisotropic kinetic equilibria in collisionless N-body systems

A new intrinsically-relativistic kinetic mechanism for generation of nonisotropic relativistic kinetic equilibria in collisionless N-body systems is pointed out. The theory is developed in the framework of the covariant Vlasov… Click to show full abstract

A new intrinsically-relativistic kinetic mechanism for generation of nonisotropic relativistic kinetic equilibria in collisionless N-body systems is pointed out. The theory is developed in the framework of the covariant Vlasov statistical description. The new effect is based on the constraints placed by the conservation laws of neutral single-particle dynamics in prescribed background curved-spacetimes demonstrating existence of Killing tensors. As an illustration, the particular case of the Kerr spacetime admitting the so-called Carter constant for the particle geodesic motion is considered. The general functional form of the equilibrium kinetic distribution function (KDF) is determined and an explicit realization in terms of Gaussian-like distributions is provided. It is shown that, due to the Carter constant, these equilibrium KDFs exhibit an anisotropic phase-space functional dependence in terms of the single-particle 4-velocity components, giving rise to corresponding nonisotropic continuum fluid fields. The qualitative properties of the equilibrium stress-energy tensor associated with these systems are discussed, with a particular emphasis on the related occurrence of temperature anisotropy effects. The theory is susceptible of astrophysical applications, including in particular the statistical properties of dark matter (DM) halos around stellar-mass or galactic-center black holes.

Keywords: kinetic equilibria; mechanism generation; carter constant; body systems; collisionless body; equilibria collisionless

Journal Title: International Journal of Modern Physics D
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.