LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hamiltonian analysis of a topological theory in the presence of boundaries

Photo by dawson2406 from unsplash

We perform the canonical Hamiltonian analysis of a topological gauge theory, that can be seen both as a theory defined on a four-dimensional spacetime region with boundaries — the bulk… Click to show full abstract

We perform the canonical Hamiltonian analysis of a topological gauge theory, that can be seen both as a theory defined on a four-dimensional spacetime region with boundaries — the bulk theory —, or as a theory defined on the boundary of the region — the boundary theory —. In our case, the bulk theory is given by the 4-dimensional [Formula: see text] Pontryagin action and the boundary one is defined by the [Formula: see text] Chern–Simons action. We analyze the conditions that need to be imposed on the bulk theory so that the total Hamiltonian, smeared constraints and generators of gauge transformations be well defined (differentiable) for generic boundary conditions. We pay special attention to the interplay between the constraints and boundary conditions in the bulk theory on the one side, and the constraints in the boundary theory, on the other side. We illustrate how both theories are equivalent, despite the different canonical variables and constraint structure, by explicitly showing that they both have the same symmetries, degrees of freedom and observables.

Keywords: theory; topological theory; analysis topological; bulk theory; hamiltonian analysis

Journal Title: International Journal of Modern Physics D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.