LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamics of scalar field models with kinetic corrections

Photo by glenncarstenspeters from unsplash

In this work, we compare the thermodynamical viability of two types of noncanonical scalar field models with kinetic corrections: the square kinetic and square root kinetic corrections. In modern cosmology,… Click to show full abstract

In this work, we compare the thermodynamical viability of two types of noncanonical scalar field models with kinetic corrections: the square kinetic and square root kinetic corrections. In modern cosmology, the generalized second law of thermodynamics (GSLT) plays an important role in deciding thermodynamical compliance of a model as one cannot consider a model to be viable if it fails to respect GSLT. Hence, for comparing thermodynamical viability, we examine the validity of GSLT for these two models. For this purpose, by employing the Unified first law (UFL), we calculate the total entropy of these two models in apparent and event horizons. The validity of GSLT is then examined from the autonomous systems as the original expressions of total entropy are very complicated. Although, at the background level, both models give interesting cosmological dynamics, however, thermodynamically we found that the square kinetic correction is more realistic as compared to the square root kinetic correction. More precisely, the GSLT holds for the square kinetic correction throughout the evolutionary history except only during the radiation epoch where the scalar field may not represent a true description of the matter content. On the other hand, the square root kinetic model fails to satisfy the GSLT in major cosmological eras.

Keywords: field models; models kinetic; scalar field; kinetic corrections; thermodynamics

Journal Title: International Journal of Modern Physics D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.