LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Axial gravitational waves in Bianchi I universe

Photo from wikipedia

In this paper, we have studied the propagation of axial gravitational waves in Bianchi I universe using the Regge-Wheeler gauge. In this gauge, there are only two non-zero components of… Click to show full abstract

In this paper, we have studied the propagation of axial gravitational waves in Bianchi I universe using the Regge-Wheeler gauge. In this gauge, there are only two non-zero components of $ h_{\mu\nu} $ in the case of axial waves: $h_0(t,r)$ and $h_1(t,r)$. The field equations in absence of matter have been derived both for the unperturbed as well as axially perturbed metric. These field equations are solved simultaneously by assuming the expansion scalar $\Theta$ to be proportional to the shear scalar $\sigma$ (so that $a= b^n$, where $a$, $b$ are the metric coefficients and $n$ is an arbitrary constant), and the wave equation for the perturbation parameter $h_0(t,r)$ have been derived. We used the method of separation of variables to solve for this parameter, and have subsequently determined $h_1(t,r)$. We then discuss a few special cases in order to interpret the results. We find that the anisotropy of the background spacetime is responsible for the damping of the gravitational waves as they propagate through this spacetime. The perturbations depend on the values of the angular momentum $l$. The field equations in the presence of matter reveal that the axially perturbed spacetime leads to perturbations only in the azimuthal velocity of the fluid leaving the matter field undisturbed.

Keywords: waves bianchi; gravitational waves; bianchi universe; field equations; axial gravitational

Journal Title: International Journal of Modern Physics D
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.